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Abstract
In this study, we have studied the structural, elastic, electronic, thermodynamical, and
vibrational properties of LaBi by performing ab initio calculations within the local-density
approximation (LDA). In particular, the lattice constant, bulk modulus, cohesive energy, phase
transition pressure (Pt) from the NaCl (B1) to the CsCl (B2) structure, second-order elastic
constants (Ci j), electronic band structures, and lattice dynamical properties were calculated and
compared with the available experimental and other theoretical values. In order to obtain further
information, we have also predicted Young’s modulus (E), Poisson’s ratio (ν), the anisotropy
factor (A), sound velocities, Debye temperature (θD), and their pressure-dependent behaviour in
the B1 phase. In addition, we have estimated the temperature-dependent behaviour of some
thermodynamical properties, such as entropy and heat capacity from the lattice dynamical data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Lanthanum monopnictides have attracted increased attention
because of their scientific and technological importance.
It is of significance to understand their various unusual
structural, dynamical, electronic, and magnetic properties.
The nature of the f electrons in these compounds, which
are responsible for magnetic and electrical properties, can
be changed from localized to itinerant, leading to significant
changes in the structural, physical, and chemical properties of
these compounds [1]. The rare-earth pnictides, generally, have
low carrier, strongly correlated systems [2], and they show
dense Kondo behaviour and heavy fermion states [3–5].

Structurally, LaBi crystallizes in cubic NaCl structure
at ambient pressure [6] like other La monopnictides, and
at high pressure it undergoes a phase transition either to
CsCl (B2) or to tetragonal (BCT) structure [7, 8]. In the
B1 phase, the lanthanum atom is positioned at (0, 0, 0) and
the bismuth atom at (1/2, 1/2, 1/2) with space group Fm3m
(225). Although much work has been performed on the
lanthanum monopnictides ([6–19], and references therein),
LaBi, in the same family, has been the subject of only a
few theoretical works [6–10]. Specifically, Davidov et al

3 Author to whom any correspondence should be addressed.

[6] have measured the lattice constants of rare-earth mono
bismuths including LaBi. Vaitheeswaran et al [7] have studied
the electronic structures and high-pressure structural phases
of LaSb and LaBi by using the tight-binding linear muffin
tin orbital method (TB-LMTO). These authors analysed the
relative stabilities of LaSb and LaBi at high pressures in
the rocksalt, primitive tetragonal, and CsCl structures. They
concluded that the tetragonal phase rather than the CsCl phase
has been preferred. Pagare et al [8] have studied the pressure
induced structural phase transition and elastic constants of
some rare-earth monopnictides including LaBi by using the
interatomic potential model. Hasegawa [9] has studied the
structural and electronic properties of LaSb and LaBi based on
the first-principles methods, and predicted that a BCT phase
is stable at high pressure. Benedict [10] has reported the bulk
modulus of LaBi in the B1 phase.

However, the other physical properties of this compound
have received less or no attention. To our knowledge, the lattice
dynamical behaviours, important bulk properties for solids,
have been obtained neither theoretically nor experimentally for
LaBi so far. Consequently, the main purpose of this work is
to provide some information additional to the existing data
on the physical properties of LaBi by using the ab initio
total energy calculations. In particular, we have estimated
the melting temperature, phonon dispersion curves, Young’s
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Table 1. Calculated equilibrium lattice constant (a0), bulk modulus (B), the pressure derivative of bulk modulus (B ′), and cohesive energy
(Ecoh), together with the theoretical and experimental values for LaBi.

Material Reference a (Å) B (GPa) B ′ Ecoh (kJ mol−1)

LaBi (B1) Present 6.534 62.209 3.409 −1989.3
Theorya 6.392 65.180
Theoryc 6.584 50.03 5.46 −1859.9
Experimental 6.564a 55.00b

LaBi (B2) Present 3.971 65.466 3.59 −1927.9
Theoryc 3.968 −1807.5

a Reference [6].
b Reference [7].
c Reference [8].

modulus, Poisson’s ratio, anisotropy factor, sound velocities,
and Debye temperature for LaBi. The pressure dependence
of the elastic moduli and the temperature dependence of some
thermodynamical properties such as entropy and heat capacity,
are also reported, as we have done recently for some lanthanum
monopnictides [18, 19]. Calculations on the other basic
properties in the B1 phase, such as the lattice constant, bulk
modulus, and elastic constants are repeated and compared with
the recent theoretical works. The layout of this paper is given
as follows: the method of calculation is given in section 2; the
results and overall conclusion are presented and discussed in
section 3.

2. Method of calculations

The SIESTA (The Spanish Initiative for Electronic Simulations
with Thousands of Atoms) code [20, 21] was utilized in
this study to calculate the energies and atomic forces. It
solves the quantum mechanical equation for the electrons
within the density functional approach in the local-density
approximation (LDA) For the LDA, the exchange–correlation
functional of Ceperley and Adler [22] as parametrized by
Perdew and Zunger [23] was used. The interactions between
electrons and core ions are simulated with separable Troullier–
Martins [24] norm-conserving pseudopotentials. The basis
set is based on the finite-range pseudoatomic orbitals (PAOs)
of the Sankey–Niklewski type [25], generalized to include
multiple-zeta decays.

We have generated atomic pseudopotentials separately for
atoms La and Bi by using the 5s25p6 and 6s26p3 atomic
configurations, respectively. The basis set for La is 5s and
5p as semicore (simple zeta). The 6s and 5d orbitals are
described with double-zeta, and a simple-zeta 6p is used as
polarization for La. The cut-off radii for the present atomic
pseudopotentials are taken as s: 1.85, p: 2.20, d: 3.10, f: 1.40
au for La and 2.67 au for the s, p, d and f channels for Bi.

Here, we have used a double-zeta plus polarization (DZP)
orbitals basis in which polarization orbitals are constructed
from perturbation theory, and they are defined so they have the
minimum angular momentum l such that there are no occupied
orbitals with the same l in the valence shell of the ground-
state atomic configuration. By using the cut-off energies
between 100 and 300 Ryd with various basis sets, we found
an optimal value of around 150 Ryd. Atoms were allowed to

Figure 1. Energy versus volume curves of LaBi.

relax until atomic forces were less than 0.04 eV Å
−1

. For
the final convergence, 196 k-points were enough to obtain
the converged total energies �E to about 1 meV/atom for
the present compound. The relativistic effects are taken into
account for La due to its heavy mass in pseudopotential
calculations.

3. Results and discussion

3.1. Structural and electronic properties

First, the equilibrium lattice parameter, bulk modulus, and its
pressure derivative are computed by minimizing the crystal’s
total energy by means of Murnaghan’s equation of state
(EOS) [26] and are shown in figure 1. The obtained results are
also indicated in table 1 along with the other theoretical [6, 8]
and experimental [6, 27] values for the B1 and B2 structures.
The calculated lattice constant (a0) and bulk modulus are in
excellent agreement with the experimental values for the B1
structure [6, 27] and the agreement is better than some other
theoretical findings. It is known that the LDA calculations,
generally, underestimate the lattice constants (about 1–2%) and
overestimate the bulk modulus (10–12%) as in the present case.

The cohesive energy is known as a measure of the strength
of the forces, which bind atoms together in the solid state.
The cohesive energy (Ecoh) of a given phase is defined as the
difference in the total energy of the constituent atoms at infinite
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Figure 2. Calculated band structures for LaBi compound in the
B1 structure. The position of the Fermi level is at 0 eV.

separation and the total energy of that particular phase:

EAB
coh = [EA

atom + EB
atom − EAB

total]

where EAB
total is the total energy of the compound at the

equilibrium lattice constant and EA
atom and EB

atom are the
atomic energies of the pure constituent atoms. The energy
calculations for both pure constituent atoms and compound
have to be performed at the same level of accuracy so as to
obtain a precise value for the cohesive energy [30]. Energy
of an isolated atom is calculated by considering a supercell
containing an isolated atom. This is achieved by using the spin-
dependent form of functional, with atoms in the ground-state
spin configuration.

In this connection, the cohesive energies of LaBi in the
B1 and B2 structures are calculated. The computed cohesive
energies (Ecoh) for B1 structures are found to be −1989.3
and −1927.9 kJ mol−1 for LaBi in B1 and B2 structures,
respectively, and they are also listed in table 1. The present
value of Ecoh is about 7% higher than those given in [8]
obtained using the empirical interionic potential method for B1
and B2 structures.

Phase transition pressure from B1 to B2 is only considered
and found to be 17.82 GPa in terms of the ‘common tangent
technique’ in figure 1.

Although it is not our main intention here to make the
detailed band-structure calculations, we have predicted the
band structures for LaBi along the high-symmetry directions
(see figure 2). They are of comparable quality to the other first-
principles LDA calculations [28, 29], and exhibit a metallic
character.

3.2. Elastic properties

The elastic constants of solids provide a link between the
mechanical and dynamical behaviour of crystals, and give
important information concerning the nature of the forces
operating in solids. In particular, they provide information
on the stability and stiffness of materials, and their ab
initio calculation requires precise methods. Since the
forces and the elastic constants are functions of the first-
order and second-order derivatives of the potentials, their

Figure 3. Pressure dependence of elastic properties for LaBi in the
B1 structure.

Table 2. Elastic constants (in GPa) for LaBi in the B1 structure.

Material Reference C11 C12 C44

LaBi Present 140.12 58.15 17.94
Theorya 109.6 18.90 18.90

a Reference [8].

calculation will provide a further check on the accuracy
of the calculation of forces in solids. The effect of
pressure on the elastic constants is essential, especially, for
understanding interatomic interactions, mechanical stability,
and phase transition mechanisms. Here, to calculate the
elastic constants (Ci j ), we have used the ‘volume-conserving’
technique [31, 32] as we did recently for LaP and LaAs [18].
The present values of elastic constants for LaBi are given
in table 2 along with the other theoretical results for the
B1 structure. Our C44 value is in accord with the other
theoretical value in [8], but the present values of C11 and C12

are significantly higher than those given in [8] obtained by
using the potential model.

The traditional mechanical stability conditions on the
elastic constants in cubic crystals are known as C11 − C12 > 0,
C11 > 0, C44 > 0, C11 + 2C12 > 0, and C12 < B < C11.
Our results for elastic constants given in table 2 satisfy these
stability conditions.

We have also calculated the pressure dependence of
the second-order elastic constants (SOEC) in the 0–25 GPa
pressure range for LaBi, as shown in figure 3. Any
experimental data are available for comparison with the
figure 3, but similar behaviours were observed in some binary
compounds [14, 32]. As expected, both C11 and C12 increase
monotonically with pressure whereas the slope for C44 is lower.

The Zener anisotropy factor (A), Poisson’s ratio (ν),
shear modulus (C ′ = (C11 − C12)/2), and Young’s modulus
(E), which are the most interesting elastic properties for
applications, are also calculated from the computed data using
the following relations [33]:

A = 2C44

C11 − C12
, (1)

3
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Figure 4. Pressure dependence of Zener anisotropy factor and
Poisson’s ratio for LaBi in the B1 structure.

Table 3. The calculated Zener anisotropy factor (A), Poisson’s ratio
(ν), Young’s modulus (E), and shear modulus (C ′) for LaBi in the
B1 structure.

Material Reference A ν E (GPa) C ′ (GPa)

LaBi Present 0.4377 0.3218 66.49 40.98

ν = 1

2

[
(B − 2

3 G)

(B + 1
3 G)

]
, (2)

and

E = 9G B

G + 3B
(3)

where G = (GV + GR)/2 is the isotropic shear modulus, GV

is Voigt’s shear modulus corresponding to the upper bound of
G values, and GR is Reuss’s shear modulus corresponding to
the lower bound of G values; they can be written as GV =
(C11 − C12 + 3C44)/5, and 5/GR = 4/(C11 − C12) + 3/C44.

Using the above expressions, we have calculated the
values of the Zener anisotropy factor, Poisson’s ratio, Young’s
modulus, and shear modulus for LaBi, as given in table 3.
The variations of the anisotropy factor and Poisson’s ratio with
pressure are also depicted in figure 4. The anisotropy factor
at high pressure is important for understanding the evolution
of bonding in the system. In figure 4, the anisotropy factor
gradually decreases with pressure in the studied pressure range,
but the Poisson’s ratio shows a small increasing rate, indicating
an activation of the shear mode for deformation [34–37]. The
variations of Young’s and shear moduli with pressure are also
depicted in figure 3, and both curves show a similar trend in
the considered pressure range. This can be explained by near
neighbour replacement of atoms [37–39].

The Debye temperature is known as an important
fundamental parameter closely related to many physical
properties such as specific heat and melting temperature. At
low temperatures the vibrational excitations arise solely from
acoustic vibrations. Hence, at low temperatures the Debye
temperature calculated from elastic constants is the same as
that determined from specific heat measurements. We have
calculated the Debye temperature, θD, from the elastic constant
data by using the average sound velocity, vm, by the following

Table 4. The longitudinal, transverse, average elastic wave velocity,
the Debye temperature and melting temperature for LaBi in the B1
structure.

Material Reference
vl

(m s−1)
vt

(m s−1)
vm

(m s−1)
θD

(K)
Tm

(K)

LaBi Present 3398 1741 1950 178 1185 ± 555

common relation given in [40]

θD = h̄

k

[
3n

4π

(
NAρ

M

)]1/3

vm (4)

where h̄ is Planck’s constants, k is Boltzmann’s constant, NA

is Avogadro’s number, n is the number of atoms per formula
unit, M is the molecular mass per formula unit, ρ(= M/V ) is
the density, and vm is obtained from [41]

vm =
[

1

3

(
2

v3
t

+ 1

v3
l

)]1/3

(5)

where vl and vt, are the longitudinal and transverse elastic
wave velocities, respectively, which are obtained from Navier’s
equation [42],

vl =
√

3B + 4G

3ρ
(6)

and

vt =
√

G

ρ
. (7)

The calculated longitudinal, transverse, and average elastic
wave velocities for LaBi are given in table 4. Debye
temperature is estimated (average) to be 177.86 K. This value
is higher than that for the constituent atom Bi (120 K) and La
(142 K) in the β phase.

The empirical relation [43], Tm = 607 + 9.3B ± 555,
is used to estimate the melting temperature, and found to
be 1185 ± 555 K for LaBi. This value is lower than that
for constituent atom La (1193 K) and higher than that for
constituent atom Bi (544 K).

3.3. Phonon dispersion curves

The present LDA phonon dispersion curves and density of
states of LaBi along the high-symmetry directions were
calculated by using the PHONON software [44]. This
code, which is compatible with SIESTA, uses the ‘Direct
Method’ [45] and the Hellmann–Feynman forces on atoms
for generating the phonon dispersion and the density of states
(DOS), and its theoretical and applicational details can be
found in [46, 47] and references therein. Specifically, we have
calculated the phonon dispersion curves in high-symmetry
directions and the DOS for a 2 × 2 × 2 cubic supercell
with 64 atoms. The displacement amplitudes are taken as
0.03 Å, and the positive and negative atomic displacements
along the x, y, and z directions are taken into account. The
Hellmann–Feynman forces acting on the atoms in the supercell
are evaluated to construct the force constants and dynamical

4
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Figure 5. Calculated phonon dispersions, total, and partial density of states for LaBi in the B1 structure.

matrix. Many of the physical properties of solids depend
on their phonon properties, such as specific heat, thermal
expansion, heat conduction, and electron–phonon interaction.

The obtained phonon dispersion curves and the corre-
sponding one-phonon density of states for LaBi along the
high-symmetry directions are illustrated in figure 5. It can
be seen from figure 5 that the mass difference between an-
ions and cations seriously affects the shapes of the dispersion
curves and the corresponding density of states. For LaBi, the
clear gap between the acoustic and optic branches is not seen
and they cross in the [110] and [111] symmetry directions.
The present phonon dispersion curves are similar to other lan-
thanum monopnictides such as LaAs and LaP [18] in B1 struc-
ture.

The related total and partial densities of phonon states for
this compound are shown below the phonon dispersion curves.
One can see that the main contribution to acoustic phonons
comes from the bismuth sublattice, while the high-frequency
phonons are dominated by the La ions.

The data from the partial and total densities of states
were used to calculate the temperature dependence of the heat
capacity and entropy in the harmonic approximation. We
have also plotted the temperature-dependent variations of the

entropy and heat capacity (Cv), at constant volume in the B1
structure for this compound and its constituent atoms, by using
the data obtained from SIESTA and PHONON codes [44], in
figures 6 and 7. The contributions from the lattice vibration
to the total heat capacity of LaBi are illustrated in figure 6.
The temperature is limited to 1000 K to decrease the probable
influence of anharmonicity. The contribution of the lattice to
the heat capacity shown in figure 6 follows the Debye model
and approaches the Dulong–Petit limit at high temperatures
(about room temperature). At high temperature, it can be
seen from these figures that the total heat capacity for LaBi
is approximately equal to the sum of the heat capacities of the
constituent atoms. The variation of entropy with temperature
for LaBi is given in figure 7 over the same temperature range,
the total and partial entropy graphs exhibit a similar trend.

As an overall conclusion, we present the results of our
calculations, employing the Siesta method, on the structural,
mechanical, elastic, electronic, and thermodynamical pro-
perties for LaBi. Specifically, the lattice constants, bulk
modulus, the pressure derivative of bulk modulus, cohesive
energy, elastic constants (and their related quantities, such
as Young’s modulus, anisotropy factor, and Poisson’s
ratio), pressure dependence of elastic constants, the melting

5
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Figure 6. Temperature dependence of heat capacity for LaBi in the
B1 structure.

Figure 7. Temperature dependence of entropy for LaBi in the
B1 structure.

temperature, the Debye temperature, and phonon frequencies
for LaBi have been calculated. The present results are
in agreement with the available experimental data and
other theoretical findings. The original aspects of the
present calculations have been the phonon dispersion curves,
mechanical properties, and thermodynamical results, which
have not been considered previously. We hope that some of our
results will be tested, to confirm the reliability, experimentally
and theoretically using different methods.
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